4-Aminophenylacetic acid (4-APAA), a peptide mimic lacking a peptide bond, has been shown to interact with a proton-coupled oligopeptide transporter using a number of different experimental approaches. In addition to inhibiting transport of labeled peptides, these studies show that 4-APAA is itself translocated.4-APAA transport across the rat intact intestine was stimulated 18-fold by luminal acidification (to pH 6.8) as determined by high performance liquid chromatography (HPLC); in enterocytes isolated from mouse small intestine the intracellular pH was reduced on application of 4-APAA, as shown fluorimetrically with the pH indicator carboxy-SNARF; 4-APAA trans-stimulated radiolabeled peptide transport in brush-border membrane vesicles isolated from rat renal cortex; and in Xenopus oocytes expressing PepT1, 4-APAA produced trans-stimulation of radiolabeled peptide efflux, and as determined by HPLC, was a substrate for translocation by this transporter.These results with 4-APAA show for the first time that the presence of a peptide bond is not a requirement for rapid translocation through the proton-linked oligopeptide transporter (PepT1). Further investigation will be needed to determine the minimal structural requirements for a molecule to be a substrate for this transporter.The rapid uptake of intact small peptides across the brushborder membrane of the small intestinal epithelium is the major route for absorption of dietary protein ␣-amino nitrogen (1). Hitherto, it has been thought that a number of chemical features, for example free amino and carboxyl termini, are essential in contributing to substrate interaction with, and translocation through, the intestinal peptide transporter.These features include the presence of a peptide bond within the substrate molecules. Indeed a major review (1) states that "it is the presence of peptide bonds which make di-and tripeptide acceptable to the peptide transport systems." Although previous work (e.g. Ref.2) has shown that molecules lacking this feature can inhibit transport of peptides (presumably by substrate binding), we describe here for the first time rapid transport of a small totally non-peptidic substrate through the intestinal peptide transporter. The substrate, 4-aminophenylacetic acid (4-APAA), 1 was selected on the basis of its chemical structure, it being a potential mimic of a dipeptide (D-Phe-LAla) (Fig. 1) which previously we have shown to be an excellent substrate for epithelial peptide transport (3, 4).
EXPERIMENTAL PROCEDURESRat renal brush-border membrane vesicles were prepared as described previously (5), and initial rates of labeled peptide transport (influx, efflux) were determined by rapid filtration (4, 6). Rat intestinal loops in vitro and vascularly perfused small intestine in situ were used to measure transepithelial fluxes in the intact small intestine as described previously (3, 7). Luminal pH was changed using a previously published protocol (8). Isolated murine enterocytes were prepared by enzymatic digestion using haluronidase, and i...