The ecosystem service value (ESV) gradient-evolution pattern of a river basin’s land and water-intertwined zones has a variety of ecosystem service values, such as biodiversity conservation, water conservation, water purification, etc. The study of the ecosystem service value (ESV) gradient-evolution pattern of a river basin’s land and water-intertwined zones will provide a scientific basis for the construction and protection of the ecological security pattern of the river basins. In this study, we combined the unit area equivalent factor method and geographically weighted regression (GWR) model to classify and analyze the gradient change pattern of ESV upstream, downstream, and along the river of the Guangdong mainstream section of the Xijiang River in China, and the conclusions are as follows: (1) The corresponding ESV share of each land use type was in the following order: water bodies > broad-leaved forest > artificial wetland > scrub > paddy field > coniferous forest > natural wetland > grassland. The level of each type of ESV does not depend entirely on the size of the area but is determined by the ecosystem service functions it can provide and the level of ESV per unit area; (2) the relationship between land use types along both sides of the river in the Guangdong section of the Xijiang River Basin shows a tendency to shift from water ecosystems to terrestrial ecosystems, and the ESV gradually decreases with the increase in distance from the water. (3) The upstream to the downstream area showed a trend of changing from terrestrial ecosystems to aquatic ecosystems, such as broad-leaved forests, scrublands, water bodies, artificial wetlands, etc., and the mean land ESV showed a general trend of undulating change and decline with the reduction in the distance from the downstream area. (4) Natural factors, such as the topography and geomorphology of the basin and the socio-economic factors of power consumption, influence the spatial distribution characteristics of the ESV in the region; among them, socio-economic factors, such as total power consumption, industrial exhaust gas emissions, industrial wastewater emissions, etc., in the economically developed areas of the Xijiang River Basin are the determinants of the changes in ESV, which are generated by human living and production activities, and these indirectly affect the magnitude of the ESV by influencing the factors of temperature and gas.