Purpose
The purpose of this study is to investigate the effect of ferrite on hydrogen embrittlement (HE) of the 17-4PH stainless steels.
Design/methodology/approach
The effects of ferrite on HE of the 17-4PH stainless steels were investigated by observing microstructure and conducting slow-strain-rate tensile tests and hydrogen permeability tests.
Findings
The microstructure of the ferrite-bearing sample is lath martensite and banded ferrite, and the ferrite-free sample is lath martensite. After hydrogen charging, the plasticity of the two steels is significantly reduced, along with the tensile strength of the ferrite-free sample. The HE susceptibility of the ferrite-bearing sample is significantly lower than the ferrite-free steel, and the primary fracture modes gradually evolved from typical dimple to quasi-cleavage and intergranular cracking. After aging at 480°C for 4 h and hydrogen charging for 12 h, the 40.9% HE susceptibility of ferrite-bearing samples was the lowest. In addition, the hydrogen permeation tests show that ferrite is a fast diffusion channel for hydrogen, and the ferrite-bearing samples have higher effective hydrogen diffusivity and lower hydrogen concentration.
Originality/value
There are a few studies of the ferrite effect on the HE properties of martensitic precipitation hardening stainless steel.