Glutamicibacter arilaitensis is one of the predominant bacterial species involved in the coloration of cheese rinds, especially smear-ripened cheeses. Besides well-known yellow-pigmented carotenoids, this species exhibits an ability to produce red pigments, as the occurrence of pink/red formation was previously found when co-cultured with a fungal strain. In this work, the red pigments synthesized by G. arilaitensis strains grown on cheese-based (curd) solid medium deacidified using Debaryomyces hansenii were identified. The analyses using HPLC equipped with both fluorescence and diode array detectors were performed to characterize the pigments extracted from a dry matter of the medium inoculated with either G. arilaitensis Re117, Po102, or Stp101. Based on the UV–vis absorption spectra, the elution order, and fluorescent property, compared to those of the porphyrin standards, eight metal-free porphyrins, including UPI, UPIII, 7PI, 6PI, 5PI, CPI, CPIII, and MPIX, were indicated as components of the red pigments produced by these G. arilaitensis strains. However, following the chromatographic profiles, the degree of porphyrins formed by each strain was apparently different. Regardless of precise quantitative measurement, the type strains Re117 and Po102 manifested a potential to produce a high amount of CPIII, whereas MPIX was formed by the strains Po102 and Stp101, but exceptionally high by the strain Stp101. The variation in both yield and form of the red pigments synthesized by the cheese-related bacterial G. arilaitensis has not previously been reported; therefore, our results provide the first information on these aspects.