In a gas engine based cogeneration system, heat may be recovered from two parts: Jacket water and exhaust gas. The heat from the jacket water is often recovered using a plate-type heat exchanger, and is used for room heating and/or hot water supply applications. Depending on the operating conditions of an engine and heat recovery system, there may be an imbalance in the flow rate and supply pressure between the engine side and the heat-recovery side of the heat exchanger. This imbalance causes deformation of the plate, which affects heat transfer and pressure drop characteristics. In the present study, the heat transfer and pressure drop inside a heat exchanger were investigated under varying hot-side and cold-side operating conditions. Thermal efficiency of the plate heat exchanger decreases up to 30% with an operating engine load of 50%. A correction factor for the pressure drop correlation is proposed to account for the deformation caused by an imbalance between the two sides of a heat exchanger.