The year 2020 has marked the beginning of a new life in which humans must struggle and adapt to coexist with a new coronavirus, known as COVID-19. Population density is one of the most significant factors affecting the speed of COVID-19’s spread, and it is closely related to human activity and movement. Therefore, many countries have implemented policies that restrict human movement to reduce the risk of transmission. This study aims to identify the temporal dependence between human mobility and virus transmission, indicated by the number of active cases, in the context of large-scale social restriction policies implemented by the Indonesian government. This analysis helps identify which government policies can significantly reduce the number of active COVID-19 cases in Indonesia. We conducted a temporal interdependency analysis using a time-varying Gaussian copula, where the parameter fluctuates throughout the observation. We use the percentage change in human mobility data and the number of active COVID-19 cases in Indonesia from March 28, 2020, to July 9, 2021. The results show that human mobility in public areas significantly influenced the number of active COVID-19 cases. Moreover, the temporal interdependencies between the two variables behaved differently according to the implementation period of large-scale social distancing policies. Among the five types of policies implemented in Indonesia, the policy that had the most significant influence on the number of active COVID-19 cases was several restrictions during the Implementation of Restrictions on Community Activities (Pelaksanaan Pembatasan Kegiatan Masyarakat/PPKM) period. We conclude that the strictness of rules restricting social activities generally affected the number of active COVID-19 cases, especially in the early days of the pandemic. Finally, the government can implement policies that are at least equivalent to the rules in PPKM if, in the future, cases of COVID-19 spike again.