A measurement technique for recording convective heat transfer coefficient and adiabatic film cooling effectiveness in demanding environments with highly curved surfaces and limited optical access, such as turbomachinery, is presented. Thermography and tailor-made flexible heating foils are used in conjunction with a novel multistep calibration and data reduction method. This method compensates for sensor drift, angle dependence of surface emissivity and window transmissivity, heat flux inhomogeneity, and conductive losses. The 2D infrared images are mapped onto the 3D curved surfaces and overlapped, creating surface maps of heat transfer coefficient and film cooling effectiveness covering areas significantly larger than the window size. The measurement technique’s capability is demonstrated in a sector-cascade test rig of a turbine center frame (TCF), an inherent component of modern two-spool turbofan engines. The horseshoe vortices were found to play a major role for the thermal integrity of turbine center frames, as they lead to a local increase in heat transfer, and at the same instance, to a reduction of film cooling effectiveness. It was also found that the horseshoe vortices lift off from the curved surface at 50% hub length, resulting in a pair of counter-rotating vortices. The measurement technique was validated by comparing the data against flat plate correlations and also by the linear relation between temperature difference and heat flux. This study is complemented with an extensive error and uncertainty analysis.
Article highlights
This paper presents an accurate measurement technique for heat transfer and film cooling
on 3D curved surfaces with limited optical access
using flexible tailor-made heating foils, infrared thermography and a high-fidelity multistep calibration process.
Graphical abstract