Large freshwater contributions to the Arctic Ocean from a variety of sources combine in what is, by global standards, a remarkably small ocean basin. Indeed, the Arctic Ocean receives ∼11% of global river discharge while accounting for only ∼1% of global ocean volume. As a consequence, estuarine gradients are a defining feature not only near-shore, but throughout the Arctic Ocean. Seaice dynamics also play a pivotal role in the salinity regime, adding salt to the underlying water during ice formation and releasing fresh water during ice thaw. Our understanding of physical-chemical-biological interactions within this complex system is rapidly advancing. However, much of the estuarine research to date has focused on summer, open water conditions. Furthermore, our current conceptual model for Arctic estuaries is primarily based on studies of a few major river inflows. Future advancement of estuarine research in the Arctic requires concerted seasonal coverage as well as a commitment to working within a broader range of systems. With clear signals of climate change occurring in the Arctic and greater changes anticipated in the future, there is good reason to accelerate estuarine research efforts in the region. In particular, elucidating estuarine dynamics across the near-shore to ocean-wide domains is vital for understanding potential climate impacts on local ecosystems as well as broader climate feedbacks associated with storage and release of fresh water and carbon.