Economic growths lead to population increases in large cities. This has brought about the growing necessity for apartment housing which has resulted in higher density populations living in high-rise apartment complexes. Therefore, the urban microclimate is aggravated due to the increasing ratio of artificial coverage and substandard daylight availability. To achieve a comfortable living environment and improve urban microclimates, a process considering the daylight availability and the outdoor thermal environment is required when designing apartment housing complexes. This study selected a total of 27 valid cases using an orthogonal array, L27( 3 13 ) design of experiments (DOE). As a result of significance probability obtained in DOE analysis, the design factors that have an effect on the outdoor thermal environment and daylight availability were found to be building coverage ratio, distance between buildings, and azimuth. The rankings of the effect of design factors were shown to be in the order of azimuth > building coverage ratio > distance between buildings > floor area ratio > width/depth ratio. The surface temperature of the whole building decreased by 0.3 °C and Mean Radiant Temperature (MRT) decreased by 1.1 °C as a result of applying the greenery coverage ratio to apartment complexes. Heat Island Potential (HIP) also showed a decrease of 5.4 °C (at noon).