High reactivity coke is beneficial for achieving low carbon emission blast furnace ironmaking. Therefore, the preparation of highly reactive ferro-coke has aroused widespread attention. However, the effects of the particle size of iron ore on the pyrolysis behaviour of a coal-iron ore briquette are still unclear. In this study, the effect of three particle sizes (0.50–1.00 mm, 0.25–0.50 mm and <0.74 mm) of iron ore on the thermal and kinetic behaviours of coal-iron ore briquettes were investigated by non-isothermal kinetic analysis. The results showed that the synergistic effect of iron ore and coal during coking mainly occurred during the later reaction stage (850–1100 °C) and smaller particle sizes of iron ore have a stronger synergistic effect. The addition of iron ore had little effect on T0 (the initial temperature) and Tp (the temperature at the maximum conversion rate) of briquette pyrolysis, however itgreatly affected the conversion rate and Tf (the final temperature) of the briquettes. T0 decreased with the decrease of iron ore particle sizes, while Tp and Tf showed opposite trends. After adding iron ore into the coal briquette, the reaction kinetics at all stages of the coal-iron ore briquettes changed. The weighted apparent activation energy of the caking coal (JM) briquette was 35.532 kJ/mol, which is lower than that of the coal-iron ore briquettes (38.703–55.627 kJ/mol). In addition, the weighted apparent activation energy gradually increased with decreasing iron ore particle sizes.