In recent years, multi-phase materials capable of multi-ion transport have emerged as attractive candidates for a variety of electrochemical devices. Here, we provide experimental results for fabricating a composite electrolyte made up of a one-dimensional fast sodium-ion conductor, sodium zirconogallate, and an oxygen-ion conductor, yttria-stabilized zirconia. The composite is synthesized through a vapor phase conversion mechanism, and the kinetics of this process are discussed in detail. The samples are characterized using diffraction, electron microscopy, and electrochemical impedance spectroscopy techniques. Samples with a finer grain structure exhibit higher kinetic rates due to larger three-phase boundaries per unit area. The total conductivity is fitted to an Arrhenius type equation with activation energies ranging from 0.23 eV at temperatures below 550°C to 1.07 eV above 550°C. The electrochemical performance of multi-phase multi-species, mixed Na+, and O2- conductor, is tested under both oxygen chemical potential gradient as well as sodium chemical potential gradient are discussed using the Goldman-Hodgkin-Kats and the Nernst equation.