This study analyses a set of phenomena occurring in the burnished surface layer at the initial moment of deformation formation. The aim of the present research was to explain the phenomena occurring in the top layer of the material during burnishing. The presented analyses include selected laboratory and experimental studies of the process involved in forming burnished surface layers. As shown, conducting an analysis of these processes is purposeful and important because the processes affecting final deformations determine the definitive properties of the burnished surface layers. The final results should help to increase the durability and smoothness of the surface of the products obtained. The feasibility of applying computer technology to determine the three-dimensional shape of the deformation zone formation based on measurements of the stereometry of the contact zone of the burnishing tool with the workpiece material is presented. The process of forming a deformation zone was analysed, revealing that irregularities left over from prior treatment are permanently deformed, and a new structure of irregularities is formed on the machined surface, conditioned by the mechanical, geometric, and kinematic factors of the process. Crucial to this are qualities such as the burnishing load (pressure), the type, shape, and dimensions of the tool, the properties of the workpiece material, and the roughness of the surface before burnishing. The analyses presented here include the first stage of processing, in which initial contact is made with the workpiece, and the period of actual processing, during which plastic deformation of the material occurs in three perpendicular directions, leading to the formation of a material wave on the machined surface just in front of the burnishing tool.