The present study was performed to investigate dynamic and combined effects of soil nutrients (nitrogen and phosphorus) and biotic factors on disease severity of Fusarium wilt in chickpea (AUDPC). Chickpeas were harvested, 180 days after onset of experiment, from eight natural infested soils during two years (2016 and 2017) and assessed for rhizospheric nitrogen (N-TotalR) and phosphorus availability (Olsen-P) in relation to Fusarium oxysporum f.sp ciceris inoculum density (ID-Foc), Trichoderma spp, and Pseudomonas spp as well as nitrogen (N-TotalPL) and phosphorus (P-TotalPL) plants uptake. The results showed that high level of ID-Foc significantly increased AUDPC values. It was found that ID-Foc was negatively correlated with Olsen-P and positively correlated with N-TotalR. Accordingly, AUDPC values were positively correlated with high concentrations of N-TotalR (r=0.77** in 2016, r=0.94*** in 2017) while negatively correlated with high concentrations of Olsen-P (r=-0.73** in 2016, r=-0.79** in 2017). In addition, AUDPC values showed negative interactions with N-TotalPL (r=-0.80** in 2016, r=-0.78** in 2017), whereas positive interactions with P-TotalPL (r=0.80** in 2016, r=0.87** in 2017). Moreover, AUDPC values were negatively associated with Pseudomonas spp and nodosity during the two years of study as with Trichoderma spp in 2017. The results demonstrated that wilt disease severity was strongly associated with nutrients and biological soil properties. It can be assumed that soils with highest Olsen-P levels, Trichoderma spp and Pseudomonas spp can help Fusarium wilt suppression.