The effect of malting periods on the nutritional composition and physico-chemical properties of flour from pearl millet (Ex-Borno) variety was evaluated. Grains were steeped at 25 °C for 24 h and germinated for different durations (12, 24, 36, 48, 60, 72, 84 and 96 h) before kilning at 55 °C for 18 h. The kilned seeds were devegetated, milled, sieved and analysed for their proximate composition, amino acid composition, total phenolic content, functional and pasting properties. The carbohydrate, fat and total phenolic contents of the pearl millet flour samples decreased while protein content increased with increased malting periods. Leucine was the dominant amino acid in the flour and 48 h-malted flour had the highest total amino acid (6.72). Peak viscosity significantly decreased as the malting period increased. Solubility index, pasting temperature and phenolic content of the flours ranged from 5.13 to 17.24%, 69.05 to 89.5 °C and 130.20 to 169.90 mg/100 g, respectively. Malting offers a means of improving the nutritional profile of Ex-Borno pearl millet flour with an increased protein and fibre and reduced fat content. Malting also enhanced the functional and pasting properties of the flour.