The influences of Li content on the corrosion behavior of TC4 (Ti6Al4V) titanium alloy were explored when the TC4 titanium alloy was immersed in Al–Li alloy melt containing 0%, 1%, and 2% lithium at 680 °C, 700 °C, and 720 °C for 0.5 h, 1 h, and 2 h. The structure and growth law of the diffusion reaction layer at solid–liquid interface were studied, and the growth kinetic equation of the diffusion reaction layer was established. In addition, Ti content in Al–Li alloy melt was determined and its dissolution rate was calculated. The results showed that with the increase of lithium content in the melt, the thickness of the diffusion reaction layer (DRL) between TC4 titanium alloy and the melt increased significantly, and the activation energies of the diffusion reaction obtained were 141.28 kJ·mol−1 in liquid Al, 86.62 kJ·mol−1 in liquid Al–1Li alloy, and 43.42 kJ·mol−1 in liquid Al–2Li alloy, respectively. The dissolution rate of Ti in Al–Li alloy melts increased with the increase of lithium content in melts. When the holding time reached 3 h in a TC4 crucible, the content of Ti dissolved in the Al–2Li alloy melt was 0.105 wt%.