Schiff bases, named after Hugo Schiff, are formed when primary amine reacts with carbonyl compounds (aldehyde or ketone) under specific conditions. Schiff bases are economical, simple synthetic routes, and easily accessible in laboratories. They have medicinal and biological applications such as antiviral, antioxidant, antifungal, anticancer, anthelmintic, antibacterial, antimalarial, anti-inflammatory, antiglycation, anti-ulcerogenic, and analgesic potentials. A number of Schiff bases are reported for the detection of various metal ions. They are also used as catalysts, polymer stabilizers, intermediates in organic synthesis, and corrosion inhibitors. In this review, we have highlighted the recent advancements in the development of bioactive Schiff base derivatives and their sensing applications for detecting metal cations. Additionally, various spectroscopic techniques for structural characterization, such as X-ray diffraction analysis (XRD), FT-IR, UV-vis, and NMR spectroscopy were also discussed.