This work compares three nonlinear solution methods for the performance of an induction motor’s magnetic equivalent circuit model with magnetic saturation. The interrelation between magnetic flux density and permeability introduces nonlinearities in the differential system of equations. Three popular nonlinear solution methods are selected for comparison, namely (i) the Gauss–Seidel method, (ii) the Newton–Raphson method and (iii) the inverse Broyden’s method. While all three methods have been applied in this context before, no comparison study has been published to the authors’ best knowledge. The study finds that the inverse Broyden’s method is most performant in terms of the number of required iterations, the computation time per iteration and the resulting total computation time. However, for substantial saturation levels, the authors recommend a hybrid implementation of multiple solution methods to obtain robust and reliable convergence.