In vertebrates each of the three striated muscle types (fast skeletal, slow skeletal, and cardiac) contain distinct isoforms of a number of different contractile proteins including troponin I (TnI). The functional characteristics of these proteins have a significant influence on muscle function and contractility. The purpose of this study was to characterize which TnI gene and protein isoforms are expressed in the different muscle types of rainbow trout (Oncorhynchus mykiss) and to determine whether isoform expression changes in response to cold acclimation (4°C). Semiquantitative real-time PCR was used to characterize the expression of seven different TnI genes. The sequence of these genes, cloned from Atlantic salmon (Salmo salar) and rainbow trout, were obtained from the National Center for Biotechnology Information databases. One-dimensional gel electrophoresis and tandem mass spectrometry were used to identify the TnI protein isoforms expressed in each muscle type. Interestingly, the results indicate that each muscle type expresses the gene transcripts of up to seven TnI isoforms. There are significant differences, however, in the expression pattern of these genes between muscle types. In addition, cold acclimation was found to increase the expression of specific gene transcripts in each muscle type. The proteomics analysis demonstrates that fast skeletal and cardiac muscle contain three TnI isoforms, whereas slow skeletal muscle contains four. No other vertebrate muscle to date has been found to express as many TnI protein isoforms. Overall this study underscores the complex molecular composition of teleost striated muscle and suggests there is an adaptive value to the unique TnI profiles of each muscle type.