To effectively confront the acute challenge of global warming, at the present stage, the Chinese government has designated carbon reduction as the core objective to accomplish the coordinated control of greenhouse gas and pollutant emissions. As China is a major manufacturing country, with the continuous improvement of air emission standards, it is particularly necessary to carry out the design of more efficient volatile organic pollutant emission devices. This study takes a treatment system with a waste gas ventilation volume of 6 × 104 m3·h−1 as an example, adopts the end treatment approach of adsorption and catalytic combustion coupling, and designs a purification device composed of multistage oil-mist recovery, electrostatic adsorption, dry filtration, activated-carbon adsorption and desorption, catalytic combustion, etc. It also employs the fuzzy proportional-integral-derivative fine temperature control algorithm, and the temperature overshoot was decreased by 85%. The average emission concentration of volatile organic compounds at the equipment outlet is 6.56 mg·m−3, and the average removal rate is 93.99%, far surpassing the national emission standards. The device operates efficiently and stably, confirming that the end-coupled treatment system based on the adaptive fuzzy proportional-integral-derivative temperature control strategy can effectively handle volatile organic compounds with oil mist and holds significant promotion and research value.