The Influence of YOLOv5 Hyperparameters for Construction Details Detection
Tautvydas Kvietkauskas
Abstract:Computer vision has become a fundamental area of interest in recent decades. Each area has unique data which object detection methods can analyse. However, it is important to find the most suitable parameters for the model that detects different object groups. In this research has been investigated the influence of pre-trained YOLOv5 (nano (n), small (s), medium (m), large (l), extralarge (x)) models, hyperparameters (learning rate, momentum, and weight decay) and different image augmentation (hsv_h, degrees, … Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.