The Shapiro effect is known, with regular steps in the voltage-current characteristic of a Josephson junction in the presence of microwave radiation, and so are its applications. In asymmetric two-junction SQUIDs (superconducting quantum interference devices), in particular the interactions between various current contributions in the two junctions lead to more varied and richer conditions. In this paper, we discuss the possibility and the impacts of a kind of internal Shapiro effect in some portions of the parameter space of the asymmetric high-T C SQUID with overdamped junctions and large loop inductance. In this predicted phenomenon, the required high-frequency radiation is produced spontaneously in the interior of the SQUID. The main message is the importance of achieving a set of nine parameters for the device whose voltage-current characteristics show no indication of spike-step-like structures.