The application of guar gum for pyrite depression in seawater flotation was assessed through microflotation tests, Focused Beam Reflectance Measurements (FBRM), and Particle Vision Measurements (PVM). Potassium amyl xanthate (PAX) and methyl isobutyl carbinol (MIBC) were used as collector and frother, respectively. Chemical species on the pyrite surface were characterized by Fourier-transform infrared spectroscopy (FTIR) spectroscopy. The microflotation tests were performed at pH 8, which is the pH at the copper sulfide processing plants that operate with seawater. Pyrite flotation recovery was correlated with FBRM and PVM characterization to delineate the pyrite depression mechanisms by the guar gum. The high flotation recovery of pyrite with PAX was significantly lowered by guar gum, indicating that this polysaccharide could be used as an effective depressant in flotation with sea water. FTIR analysis showed that PAX and guar gum co-adsorbed on the pyrite surface, but the highly hydrophilic nature of the guar gum embedded the hydrophobicity due to the PAX. FBRM and PVM revealed that the guar gum promoted the formation of flocs whose size depended on the addition of guar gum and PAX. It is proposed that the highest pyrite depression occurred not only because of the hydrophilicity induced by the guar gum, but also due to the formation of large flocs, which could not be transported by the bubbles to the froth phase. Furthermore, it is shown that an overdose of guar gum hindered the depression effect due to redispersion of the flocs.Metals 2020, 10, 239 2 of 15 pyrite declines by rising the pH [3][4][5]. This inverse relationship between recovery and pH has been associated with the greater abundance of hydrophilic hydroxides concerning hydrophobic sulfides that found on the pyrite surface. This happens because, at alkaline conditions, ferric hydroxide is generated from the ferrous hydroxide released from inside the pyrite [6][7][8]. Subsequently, ferric hydroxide that has a hydrophilic nature precipitates on the surface of the pyrite, decreasing its contact angle and consequently lowering its floatability [9,10]. In this way, by regulating the pH with alkalizing agents such as sodium hydroxide, sodium carbonate, or lime, it can make the pyrite no float. An interesting aspect is that lime is more effective compared to sodium hydroxide, which is explained by the participation of calcium ions as, at pH less than 12.5, Ca(OH) + is the main component of the solution. This hydrophilic element has a high affinity for the surface of pyrite, so it also helps to boost their depression. It is common that in the copper industry lime is used as the sole depressant for pyrite, primarily when flotation is carried out in freshwater [11,12]. Interestingly, the use of seawater is a strategy that is being frequently adopted in sectors that have a shortage of freshwater, highlighting mining plants in countries such as Chile, Australia, Indonesia, etc. [13]. However, when the operations are carried out in seawater, these are unlikely t...