Protein glycosylation is an essential posttranslational modification that affects a myriad of physiologic processes. Humans with genetic defects in glycosylation, which result in truncated glycans, often present with significant cardiac deficits. Acquired heart diseases and their associated risk factors were also linked to aberrant glycosylation, highlighting its importance in human cardiac disease. In both cases, the link between causation and corollary remains enigmatic. The glycosyltransferase gene, mannosyl (α-1,3-)-glycoprotein β-1,2- N-acetylglucosaminyltransferase (Mgat1), whose product, N-acetylglucosaminyltransferase 1 (GlcNAcT1) is necessary for the formation of hybrid and complex N-glycan structures in the medial Golgi, was shown to be at reduced levels in human end-stage cardiomyopathy, thus making Mgat1 an attractive target for investigating the role of hybrid/complex N-glycosylation in cardiac pathogenesis. Here, we created a cardiomyocyte-specific Mgat1 knockout (KO) mouse to establish a model useful in exploring the relationship between hybrid/complex N-glycosylation and cardiac function and disease. Biochemical and glycomic analyses showed that Mgat1KO cardiomyocytes produce predominately truncated N-glycan structures. All Mgat1KO mice died significantly younger than control mice and demonstrated chamber dilation and systolic dysfunction resembling human dilated cardiomyopathy (DCM). Data also indicate that a cardiomyocyte L-type voltage-gated Ca channel (Ca) subunit (α2δ1) is a GlcNAcT1 target, and Mgat1KO Ca activity is shifted to more-depolarized membrane potentials. Consistently, Mgat1KO cardiomyocyte Ca handling is altered and contraction is dyssynchronous compared with controls. The data demonstrate that reduced hybrid/complex N-glycosylation contributes to aberrant cardiac function at whole-heart and myocyte levels drawing a direct link between altered glycosylation and heart disease. Thus, the Mgat1KO provides a model for investigating the relationship between systemic reductions in glycosylation and cardiac disease, showing that clinically relevant changes in cardiomyocyte hybrid/complex N-glycosylation are sufficient to cause DCM and early death.-Ednie, A. R., Deng, W., Yip, K.-P., Bennett, E. S. Reduced myocyte complex N-glycosylation causes dilated cardiomyopathy.