The relative potencies of synthetic human cholecystokinin (h-CCK)-33, porcine CCK-33 (p-CCK-33) and CCK-8 were examined by measuring pancreatic secretion in the conscious rat (in vivo) and amylase release from rat pancreatic acini using a perifusion study (in vitro). The increments of protein output during an 1-hr infusion of 100 pmol/kg/hr of h-CCK-33, p-CCK-33 and CCK-8 were 27.0 +/- 2.9 mg/hr (M +/- SE), 19.3 +/- 2.8 and 14.0 +/- 1.8 mg/hr, respectively. H-CCK-33 and p-CCK-33 showed significantly higher responses of protein output than CCK-8 in a same molar ratio, in vivo. In vitro, the stimulation with 10(-10) M h-CCK-33, p-CCK-33 and CCK-8 led to a similar biphasic amylase release in a perifusion study. Twenty-five microM CR-1409, an antagonist for CCK receptor, completely inhibited the 10(-10) M h-CCK-33-stimulated amylase release. Although it was found that h-CCK-33 and p-CCK-33 were more potent than CCK-8 in vivo, 10(-10) M CCK-8, h-CCK-33 and p-CCK-33 were equipotent on rat pancreatic acini in vitro. It is suggested that the discrepancy in potencies of the large molecular form and small molecular form of CCK in vivo and in vitro may be attributed to the delay of degradation of the large molecular form of CCK in vivo.