Bees have ultraviolet (UV), blue and green photoreceptor types in their compound eyes with which they locate food sources in landscapes that change continuously in cues emanating from plants and backgrounds against which they are perceived. The complexity of bee vision has been elucidated through studies examining individual species under laboratory conditions. Here, we used a bee-attractive fluorescent blue trap as a model for analyzing visual signals in operation outdoors, and across bee species. We manipulated trap color (appearance to humans under light with weak UV component) and UV-induced fluorescence emission, and aligned field capture results with bee vision models. Our studies show that the bees were attracted to traps that under solar illumination exhibited strong fluorescence emission exclusively in the blue spectral region. Through quantitative analysis, we established that strong spectral overlap of trap emittance with the photosensitivity characteristic of the blue receptor type and minimal overlap with those of the other two receptor types is the most critical property of attractive traps. A parameter has been identified which predicts the degree of attractiveness of the traps and which captures trends in the field data across wild bee species and for a diversity of backgrounds.