General hyperplane sections of a Fano threefold $Y$ of index 2 and Picard
rank 1 are del Pezzo surfaces, and their Picard group is related to a root
system. To the corresponding roots, we associate objects in the Kuznetsov
component of $Y$ and investigate their moduli spaces, using the stability
condition constructed by Bayer, Lahoz, Macr\`i, and Stellari, and the
Abel--Jacobi map. We identify a subvariety of the moduli space isomorphic to
$Y$ itself, and as an application we prove a (refined) categorical Torelli
theorem for general quartic double solids.