Companies in the same supply chain influence each other, so sharing information enables more efficient supply chain management. An efficient supply chain must have a symmetry of information between participating entities, but in reality, the information is asymmetric, causing problems. The sustainability of the supply chain continues to be threatened because companies are reluctant to disclose information to others. If companies participating in the supply chain do not disclose accurate information, the next best way to improve the sustainability of the supply chain is to use data from the supply chain to determine each enterprise’s information. This study takes data from the supply chain and then uses machine learning algorithms to find which enterprise the data refer to when new data from unknown sources arise. The machine learning algorithms used are logistic regression, random forest, naive Bayes, decision tree, support vector machine, k-nearest neighbor, and multi-layer perceptron. Indicators for evaluating the performance of multi-class classification machine learning methods are accuracy, confusion matrix, precision, recall, and F1-score. The experimental results showed that LR and MLP accurately predicted companies (tiers), but NB, DT, RF, SVM, and K-NN did not accurately predict companies. In addition, the performance similarity of machine learning algorithms through experiments was classified into LR and MLP groups, NB and DT groups, and RF, SVM, and K-NN groups.