theory predicts that the plastic expression of sex-traits should be modulated not only by their production costs but also by the benefits derived from the presence of rivals and mates, yet there is a paucity of evidence for an adaptive response of sex-trait expression to social environment. We studied antler size, a costly and plastic sex trait, and tooth wear, a trait related to food intake and longevity, in over 4,000 male Iberian red deer (Cervus elaphus hispanicus) from 56 wild populations characterized by two contrasting management practices that affect male age structure and adult sex-ratio. As a consequence, these populations exhibit high and low levels of male-male competition for mating opportunities. We hypothesized that males under conditions of low intra-sexual competition would develop smaller antlers, after controlling for body size and age, than males under conditions of high intra-sexual competition, thus reducing energy demands (i.e. reducing intake and food comminution), and as a consequence, leading to less tooth wear and a concomitant longer potential lifespan. our results supported these predictions. to reject possible uncontrolled factors that may have occurred in the wild populations, we carried out an experimental design on red deer in captivity, placing males in separate plots with females or with rival males during the period of antler growth. Males living with rivals grew larger antlers than males living in a female environment, which corroborates the results found in the wild populations. As far as we know, these results show, for the first time, the modulation of a sexual trait and its costs on longevity conditional upon the level of intra-sexual competition. The expression of many sex-traits is plastic and responds to individual-and population-specific reaction norms 1-6. There is evidence for many species that environmental factors (e.g. resource availability) affect body condition and the expression of sex-traits, such as signals and weapons 1,7-11. Condition-dependence theory relies on the relative value of energy costs, because costs of producing traits are expected to be lower for individuals in good condition as compared to those in poor condition 12-15. But also, in a sexual selection context, rivals and potential mates in the social environment strongly influence the benefits associated with trait expression, so that trait investment should respond in a trade-off fashion depending on the costs but also on the benefits of trait development. One example of this in the inter-sexual selection context is that male zebra finches invest more in coloring their beaks when there are females to receive the signal 16. For intra-sexual competition, the challenge hypothesis 2 applied this idea to testosterone production relative to the probability of winning contests, which may be related