2024
DOI: 10.1609/aaai.v38i21.30398
|View full text |Cite
|
Sign up to set email alerts
|

The Inter-batch Diversity of Samples in Experience Replay for Continual Learning

Andrii Krutsylo

Abstract: In a Continual Learning setting, models are trained on data with occasional distribution shifts, resulting in forgetting the information learned before each shift. Experience Replay (ER) addresses this challenge by retaining part of the old training samples and replaying them alongside current data, improving the model's understanding of the overall distribution in training batches. The crucial factor in ER performance is the diversity of samples within batches. The impact of sample diversity across a sequence… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 3 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?