The current study tests a hypothesis that nuclear receptor signaling is altered in chronic hepatitis C patients and that the altered pattern is alcohol drinking history specific. The expression of a panel of more than 100 genes encoding nuclear receptors, co-regulators, and their direct/indirect targets was studied in human livers. (1) Gene expression pattern was compared between 15 normal donor livers and 23 HCV genotype 1 positive livers from patients without a drinking history (age, gender, and BMI matched). HCV infection increased the expression of nuclear receptors small heterodimer partner and constitutive androstane receptor (CAR) as well as genes involved in fatty acid trafficking, bile acid synthesis and uptake, and inflammatory response. However, the expression of retinoid x receptor (RXR) α, peroxisomal proliferator activated receptor (PPAR) α and β as well as SREBP-1c was decreased in HCV-infected livers. (2) Gene expression pattern was compared in chronic hepatitis C patients with (21) and without (13) a drinking history. Alcohol drinking increased the expression of genes involved in fatty acid uptake, trafficking, and oxidation, but decreased the expression of genes responsible for gluconeogenesis. These changes were consistent with reduced fasting plasma glucose levels and altered expression of upstream regulators that include RXRα, PPARα, and CAR. (3) The mRNA levels of fibroblast growth factor 21, IL-10, and fatty acid synthase, which are all regulated by nuclear receptors, showed independent correlation with hepatic HCV RNA levels. Our findings suggest that those genes and pathways that showed altered expression could potentially be therapeutic targets for HCV infection and/or alcohol drinking-induced liver injury.