Background and Objective
Photothermal therapy (PTT) has several applications in the areas of wound healing, pain management, bacterial infection control, and cancer treatment dependent on the temperature that is generated. PTT is often used exclusively with near infrared (NIR) light and most nanoparticles (NP) used for PTT are designed to absorb within one narrow range of wavelengths. We have developed a dual-wavelength photo-thermal therapy by capitalizing on the dual absorption of nanoparticles in the blue and NIR range.
Materials and Methods
Our lab has previously developed NP based on the semiconducting, conjugated polymer poly-[4,4-bis(2-ethylhexyl)-cyclopenta[2,1-b;3,4-b′]dithiophene-2,6-diyl-alt-2,1,3-benzoselenadiazole-4,7-diyl] (PCPDTBSe). The NP have strong absorption in the blue and NIR regions. In this report, we have explored the heat generated by PCPDTBSe NP using simultaneous delivery of 450 and 800nm light, either independently or together for photothermal ablation of mouse colorectal cancer cells.
Results
The heat generation studies indicated that the use of either 450 or 800 nm wavelengths at the same fluences produced approximately the same temperature change of deionized water. Fluences of 114.6 and 229.2 J/cm2, utilizing 450 or 800 nm light applied individually resulted in temperatures of 8–47°C above ambient temperature, leading to a 90% reduction in cell viability. Simultaneous stimulation of the PCPDTBSe NP with 450 and 800 nm light effectively doubles the effective power delivered, resulting in temperatures 18–63°C above ambient and 100% photothermal ablation of the colorectal cancer cells.
Conclusion
The results of this study demonstrate that PCPDTBSe polymer NP can be utilized as effective PTT agents by capitalizing on their dual absorption of both blue and NIR light. Lasers Surg. Med. 48:893–902, 2016.