This study explores the integration of artificial intelligence (AI) teaching assistants in sports tennis instruction to enhance the intelligent teaching system. Firstly, the applicability of AI technology to tennis teaching in schools is investigated. The intelligent teaching system comprises an expert system, an image acquisition system, and an intelligent language system. Secondly, employing compressed sensing theory, a framework for learning the large-scale fuzzy cognitive map (FCM) from time series data, termed compressed sensing-FCM (CS-FCM), is devised to address challenges associated with automatic learning methods in the designed AI teaching assistant system. Finally, a high-order FCM-based time series prediction framework is proposed. According to experimental simulations, CS-FCM demonstrates robust convergence and stability, achieving a stable point with a reconstruction error below 0.001 after 15 iterations for FCM with various data lengths and a density of 20%. The proposed intelligent system based on high-order complex networks significantly improves upon the limitations of the current FCM model. The advantages of its teaching assistant system can be effectively leveraged for tennis instruction in sports.