Background
Mitochondrial dysfunction is involved in the pathogenicity of Parkinson’s disease (PD). However, the genetic roles of mitochondrial function-associated genes responsible for PD need to be replicated in different cohorts.
Methods
Whole-exome and Sanger sequencing were used to identify the genetic etiology of 400 autosomal dominant-inherited PD (ADPD) patients. Variants in six dominant inherited mitochondrial function-associated genes, including HTRA2, CHCHD2, CHCHD10, TRAP1, HSPA9 and RHOT1, were analyzed.
Results
A total of 12 rare variants identified in the five genes accounted for 3% of ADPD cases, including 0.5% in HTRA2, 0.8% in CHCHD2, 1% in TRAP1, 0.3% in RHOT1 and 0.5% in HSPA9. Among them, five novel variants, p.E4A, p.R13Cfs*107 and p.R449X in TRAP1, p.S95N in RHOT1 and p.N180I in HSPA9, were identified in ADPD patients. Evidence of a founder event that occurred exclusively in Asia was identified in two probands with p.P53Afs*37 in CHCHD2, which was further observed in one patient from 300 sporadic cases. Based on burden analysis, CHCHD2 tended to be slightly enriched in ADPD. Clinically, all patients carrying mutations in the genes presented typical motor symptoms and a good response to L-DOPA. Most of them had slower disease progression (8/12) and mild cognitive impairment (9/12), but the age of onset varied. No rare variant was detected in CHCHD10.
Conclusion
Our study expands the mutation spectra and enhances the understanding of the clinical phenotype of PD patients with mitochondrial function-related gene variants. Additionally, the CHCHD2 gene should be given more attention in PD originating in the Chinese population.