Thuricin CD is a two component narrow spectrum bacteriocin comprising two peptides with targeted activity against Clostridium difficile. This study examined the bioavailability of thuricin with a view to developing it as an effective antimicrobial against intestinal infection. One of the peptides, Trn-b, was found to be degraded by the gastric enzymes pepsin and a-chymotrypsin both in vitro and in vivo, whereas Trn-a was resistant to digestion by these enzymes and hence was detected in the intestinal porcine digesta following oral ingestion by pigs. In order to determine if spores of the producing organism Bacillus thuringiensis DPC 6431 could be used to deliver the bacteriocin to the gut, spores were fed to 30 mice (approx. 10 8 -2¾10 8 per animal) and their germination, growth and production of thuricin in the gastrointestinal tract (GIT) of the animals was monitored. Almost 99 % of the spores delivered to the GIT were excreted in the first 24 h and neither Trn-a nor Trn-b was detected in the gut or faecal samples of the test mice, indicating that ingestion of B. thuringiensis spores may not be a suitable vehicle for the delivery of thuricin CD. When thuricin CD was delivered rectally to mice (n540) and C. difficile shedding monitored at 1, 6, 12 and 24 h post-treatment, there was a .95 % (