Photodynamic
theranostics that allows for concurrent photodynamic
therapy (PDT) and precise therapeutic response report has emerged
as an intriguing direction in the development of precision medicine.
An ultra-efficient photodynamic theranostics platform was developed
here based on combining and potentiating a theranostic photosensitizer,
TPCI, with other therapies for synergistic anticancer effect and synchronous
self-reporting of therapeutic response. In this study, TPCI and a
chemotherapy agent paclitaxel (PTX) were co-encapsulated in liposomes,
which exhibited a superb synergistic anticancer effect against a series
of tumor cell lines. The potency of both drugs had been boosted for
up to 30-fold compared with sole PDT or chemotherapy. More strikingly,
the released TPCI lighted up the nuclei of dead cells, triggered either
by PDT or chemotherapy, through binding with the chromatin and activating
its aggregation-induced emission, therefore self-reporting the anticancer
effect of the combined therapy in real time. The in vivo study using
a mouse model bearing PC3 prostate tumor cells demonstrated the effective
ablation of tumors with initial sizes of 200 mm3 and the
precise early tumor response monitoring by TPCI/PTX@Lipo. This PTX-potentiated
photodynamic theranostics strategy herein represented a new prototype
of self-reporting nanomedicine for precise tumor therapy.