We report results from a blind analysis of the final data taken with the Cryogenic Dark Matter Search experiment (CDMS II) at the Soudan Underground Laboratory, Minnesota, USA. A total raw exposure of 612 kg-days was analyzed for this work. We observed two events in the signal region; based on our background estimate, the probability of observing two or more background events is 23%. These data set an upper limit on the Weakly Interacting Massive Particle (WIMP)-nucleon elastic-scattering spin-independent cross-section of 7.0 × 10 −44 cm 2 for a WIMP of mass 70 GeV/c 2 at the 90% confidence level. Combining this result with all previous CDMS II data gives an upper limit on the WIMP-nucleon spin-independent cross-section of 3.8 × 10 −44 cm 2 for a WIMP of mass 70 GeV/c 2 . We also exclude new parameter space in recently proposed inelastic dark matter models. Cosmological observations [1] have led to a concordance model of the universe where ∼85% of matter is non-baryonic, non-luminous and non-relativistic at the time of structure formation. Weakly Interacting Massive Particles (WIMPs) [2] are a class of candidates for this dark matter which are particularly well motivated by proposed extensions to the Standard Model of particle physics and by thermal production models for dark matter in the early universe [3,4,5,6]. WIMPs, distributed in a halo surrounding our galaxy, would coherently scatter off nuclei in terrestrial detectors [7,8,9] with a mean recoil energy of ∼ tens of keV, presently limited by observation to a rate of less than 0.1 event 5,6,10]. Direct search experiments seek recoil signatures of these interactions and have achieved the sensitivity to begin testing the most interesting classes of WIMP models [11,12,13,14].The Cryogenic Dark Matter Search (CDMS II) experiment, located at the Soudan Underground Laboratory, uses 19 Ge (∼230 g) and 11 Si (∼100 g) particle detectors operated at cryogenic temperatures (< 50 mK) [11,15]. Each detector is a disk ∼10 mm thick and 76 mm in diameter. Particle interactions in the detectors deposit energy in the form of phonons and ionization. Phonon sensors on the top of each detector are connected to four phonon readout channels to allow measurement of the recoil enarXiv:0912.3592v1 [astro-ph.CO]