The construction of the stratum corneum (SC) is crucial to the problems of transdermal drug delivery. SC consists of the keratinocyte layers and the lipid matrix surrounding it. Among them, the lipid matrix is the barrier for many exogenous molecules, mainly composed of ceramides (CERs), free fatty acids (FFA), and cholesterol (CHOL). In this work, we developed single-component (CERs, CER-NS, and CER-EOS) and six three-component models, and each model was simulated by using the GROMOS-54A7 force field. Short-period phase (SPP) and long-period phase (LPP) systems were established separately, and area per lipid (APL), thickness, order of carbon chain (S CD ), and density distribution were analyzed. The transition of CER-NS and CER-EOS in LPP was observed. The results of hydrogen bonds in the lipid systems indicated that a strong hydrogenbond network was formed between the skin−lipid bilayers. Umbrella sampling method simulations were performed to calculate the free energy change of ethanol moving into the skin−lipid bilayer. The results revealed that ethanol molecules pulled some water molecules into the membrane when they passed through SPP-1. Our findings provided some insights and models of the stratum corneum that could be used for the subsequent mechanism of macromolecule permeation through membranes in drugs, cosmetics, and so on.