We present new experimental data on the effect of F on the stability of antigorite and its breakdown products at high pressures (2–6 GPa) and high temperatures (570–850 °C). The experiments show that F does not affect the stability of antigorite, but addition of F to the system affects which minerals are formed when antigorite breaks down. In a F-free system and in a system with intermediate F contents (2 wt% F), antigorite breaks down to olivine and orthopyroxene, but in a F-rich system (5 wt% F), antigorite breaks down to other hydrous and F-bearing mineral assemblages which include chlorite, clinohumite and humite-group minerals (HGM). Since the latter mineral phases are stable at higher pressures and temperatures, and contain more F than antigorite, significant amounts of F and potentially other halogens can be retained in the subducting slab and transported deep into the mantle and possibly even into the Earth’s transition zone.