Association and dissociation of proteins are fundamental processes in nature. While this process is simple to understand conceptually, the details of the underlying mechanism and role of the solvent are poorly understood. Here we investigate the mechanism and solvent role for the dissociation of the hydrophilic β-lactoglobulin dimer by employing transition path sampling. Analysis of the sampled path ensembles indicates that dissociation (and association) occurs via a variety of mechanisms: 1) a direct aligned dissociation 2) a hopping and rebinding transition followed by unbinding 3) a sliding transition before unbinding. Reaction coordinate and transition state analysis predicts that, besides native contact and vicinity salt-bridge interactions, solvent degrees of freedom play an important role in the dissociation process. Analysis of the structure and dynamics of the solvent molecules reveals that the dry native interface induces enhanced populations of both disordered hydration water and hydration water with higher tetrahedrality, mainly nearby hydrophobic residues. Bridging waters, hydrogen bonded to both proteins, support contacts, and exhibit a faster decay and reorientation dynamics in the transition state than in the native state interface, which renders the proteins more mobile and assists in rebinding. While not exhaustive, our sampling of rare unbiased reactive molecular dynamics trajectories shows in full detail how proteins can dissociate via complex pathways including (multiple) rebinding events. The atomistic insight obtained assists in further understanding and control of the dynamics of protein-protein interaction including the role of solvent.PACS numbers: