In this work, we study Riemann-Hilbert problem and soliton solutions of a nonlocal Sasa-Satsuma equation with reverse-time type, which is deduced from a reduction of the coupled Sasa-Satsuma system. Since the coupled Sasa-Satsuma system can describe the dynamic behaviors of two ultrashort pulse envelopes in birefringent fiber, our equation presented here has great physical applications. The classification of soliton solutions is researched in this nonlocal model, by considering inverse scattering transform to Riemann-Hilbert problem. Simultaneously, we find that the symmetry relations of discrete data in the special nonlocal model are very complicated. Especially, the eigenvectors in the scattering data are determined by the number and location of eigenvalues. Furthermore, multi-soliton solutions are not simple nonlinear superposition of multiple single-solitons. They exhibit some novel dynamics of solitons, including meandering and sudden position shifts. Also, it has the bound state of multi-soliton entanglement and its interaction with solitons.