Using Hankel operators and shift-invariant subspaces on Hilbert space, this paper develops the theory of the integrable operators associated with soft and hard edges of eigenvalue distributions of random matrices. Such Tracy-Widom operators are realized as controllability operators for linear systems, and are reproducing kernels for weighted Hardy spaces, known as Sonine spaces. Periodic solutions of Hill's equation give a new family of Tracy-Widom type operators. This paper identifies a pair of unitary groups that satisfy the von Neumann-Weyl anti-commutation relations and leave invariant the subspaces of L 2 that are the ranges of projections given by the Tracy-Widom operators for the soft edge of the Gaussian unitary ensemble and hard edge of the Jacobi ensemble.