1995
DOI: 10.1007/bf02392468
|View full text |Cite
|
Sign up to set email alerts
|

The inverse spectral problem for self-adjoint Hankel operators

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

1
76
0
1

Year Published

1999
1999
2022
2022

Publication Types

Select...
7
3

Relationship

0
10

Authors

Journals

citations
Cited by 52 publications
(78 citation statements)
references
References 10 publications
1
76
0
1
Order By: Relevance
“…For self-adjoint case, the greatest success in inverse spectral problems has been achieved for SturmLiouville operators which play an important role in many directions of mathematics and physics. For other self-adjoint operators we refer to Megretskii, Peller and Treil [15]. A fundamental idea was first provided by Gel'fand and Levitan [7] for the Sturm-Liouville problem.…”
Section: Remark 14mentioning
confidence: 99%
“…For self-adjoint case, the greatest success in inverse spectral problems has been achieved for SturmLiouville operators which play an important role in many directions of mathematics and physics. For other self-adjoint operators we refer to Megretskii, Peller and Treil [15]. A fundamental idea was first provided by Gel'fand and Levitan [7] for the Sturm-Liouville problem.…”
Section: Remark 14mentioning
confidence: 99%
“…Let μ = μ a + μ s be the Lebesgue decomposition. Then by [27], Γ is unitarily equivalent to a Hankel operator if and only if:…”
Section: Spectral Characterization Of Self-adjoint Hankel Operatorsmentioning
confidence: 99%
“…Mais dès qu'on restreint T à une classe C d'opérateurs sur H, la question devient beaucoup plus difficile. Par exemple, si C est la classe des opérateurs de Hankel, on peut montrer ( [41], avec une preuve très élaborée) que la suite (a n (T )) est encore décroissante arbitraire. Mais si C est la classe des opérateurs de composition sur l'espace de Hardy usuel H 2 du disque, cette suite n'est plus arbitraire et son étude est également non-triviale ( [37]) : en particulier, on a toujours a n (T ) ≥ δr n avec δ, r > 0.…”
Section: Opérateurs Compacts Et Nombres D'approximationunclassified