Several reinforcement materials are incorporated into a polymeric matrix to improve the mechanical properties and reduce the cost of the obtained composites. In this work, recycled high-density polyethylene/waste glass powder composites, compatibilized with maleic anhydride-grafted polyethylene, were prepared using a two-roll mill and compression molding techniques. Four levels of waste glass powder, 2, 10, 20 and 30% by weight, and five levels of the compatibilizer, polyethylene grafted with maleic anhydride (0.5, 1.5, 2.5, 5 and 7.5%by weight), were used. The effect of adding waste glass powder and compatibilizer concentration on the composite's mechanical properties, such as tensile strength, tensile strain, tensile modulus and thermal properties was studied. The results showed that superior mechanical properties were obtained and that the tensile strength and modulus increased with increasing waste glass powder content and compatibilizer concentration by 20 and 1.5 wt%, respectively. However, the elongation at the break decreased with the increase in both factors. The composite, which was prepared under ideal conditions, has high thermal stability and can be easily recycled and reprocessed for five cycles with high mechanical properties. This study recommends that the prepared composite, under optimum conditions, can be used as a cost-effective automobile dashboard material.