Biosensing requires a highly sensitive real-time detection of the biomolecules. These properties are granted by nanoplasmonic sensing techniques. SPR-based optical sensors have evolved as a sensitive and versatile biosensing tool. A growing number of SPR-based sensing applications in the solution of clinical problems are reported in the recent years. This refers to the point that these sensors provide label-free detection of the living cells and non-destructive analysis techniques. In this study, we will review the mechanism of the detection in SPR biosensing, followed by the methods used to develop sensors to detect gases and the chemical, biological, and molecular interaction. The device sensitivity improvement based on plasmonic effects is also addressed in this study, and accordingly, the size and material dependence of the resonance frequency are discussed. The reviewed articles are categorized into three groups, depending on the SPR excitation configuration. In the first group of the sensors, the sensitivity of LSPR-based sensors in prism coupler configurations is reviewed. The second group, SPR excitation by optical fiber, slightly improved the sensitivity of the detections. The unique capability of the third group, photonic crystal fiber SPR sensors, in providing greatly improved sensitivity, generated a vast field of researches and applications in biosensing devices.