The isomorphism problem for basic modules and the divisibility profile of the algebra of polynomials
P. Aydoğdu,
C. A. Arellano,
S. R. López-Permouth
et al.
Abstract:While mutual congeniality of bases is known to guarantee that basic modules from so-related bases are isomorphic, the question of what can be said about isomorphism of basic modules in general has remained open. We show that, for some algebras, basic modules may be non-isomorphic. We also show that it is possible, for some algebras, for all basic modules to be isomorphic, regardless of congeniality. In the process, and as a byproduct, we introduce the notion of domains of divisibility of modules over arbitrary… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.