Abstract. In this paper we give pinching theorems for the first nonzero eigenvalue of the Laplacian on compact hypersurfaces of ambient spaces with bounded sectional curvature. As an application we deduce a rigidity result for stable constant mean curvature hypersurfaces M of these spaces N . Indeed, we prove that if M is included in a ball of radius small enough then the Hausdorff-distance between M and a geodesic sphere S of N is small. Moreover M is diffeomorphic and quasi-isometric to S. As other application, we obtain rigidity results for almost umbilic hypersurfaces.