Efficient and robust phase equilibrium computation has become a prerequisite for successful large-scale compositional reservoir simulation. When knowledge of the number of phases is not available, the ideal strategy for phase-split calculation is the use of stability testing. Stability testing not only establishes whether a given state is stable, but also provides good initial guess for phase-split calculation. In this research, we present a general strategy for two-and three-phase split calculations based on reliable stability testing. Our strategy includes the introduction of systematic initialization of stability testing particularly for liquid/liquid and vapor/liquid/liquid equilibria. Powerful features of the strategy are extensively tested by examples including calculation of complicated phase envelopes of hydrocarbon fluids mixed with CO 2 in single-, two-, and three-phase regions.