The trend towards high power output, high speed and low power loss in engines requires a better understanding of bearing behaviour. Research in this area is directed more towards different aspects involved in bearing analyses, rather than providing a comprehensive guideline on design of bearing. This effort compiles the design methodology for selection of diametral clearance and bearing length by limiting the minimum film thickness, maximum pressure and temperature. The design procedure is summarized on the basis of the existing rapid bearing analyses for evaluation of the journal trajectory, minimum film thickness and maximum pressure and simplified thermal analysis. A flow chart is provided for step-by-step bearing design. Finally, two case studies of engine bearings are described: one investigates the VEB bigend connecting-rod bearing for a large industrial reciprocating engine and the other a main crankshaft bearing for an automotive engine.The methodology translates into easy-to-use expressions and the overall procedure is outlined, using practical data to demonstrate how this can be employed effectively by users.