The James Clerk Maxwell Telescope (JCMT) is the largest single-dish submillimetre telescope in the world, and throughout its lifetime the volume and impact of its science output have steadily increased. A key factor for this continuing productivity is an ever-evolving approach to optimising operations, data acquisition, and science product pipelines and archives. The JCMT was one of the first common-user telescopes to adopt flexible scheduling in 2003, and its impact over a decade of observing will be presented. The introduction of an advanced data-reduction pipeline played an integral role, both for fast real-time reduction during observing, and for sciencegrade reduction in support of individual projects, legacy surveys, and the JCMT Science Archive. More recently, these foundations have facilitated the commencement of remote observing in addition to traditional on-site operations to further increase on-sky science time. The contribution of highly-trained and engaged operators, support and technical staff to efficient operations will be described. The long-term returns of this evolution are presented here, noting they were achieved in face of external pressures for leaner operating budgets and reduced staffing levels. In an era when visiting observers are being phased out of many observatories, we argue that maintaining a critical level of observer participation is vital to improving and maintaining scientific productivity and facility longevity.