Contact probing is the preferable method for studying mechanical properties of thin two-dimensional (2D) materials. These studies are based on analysis of experimental force–displacement curves obtained by loading of a stretched membrane by a probe of an atomic force microscope or a nanoindenter. Both non-adhesive and adhesive contact interactions between such a probe and a 2D membrane are studied. As an example of the 2D materials, we consider a graphene crystal monolayer whose discrete structure is modelled as a 2D isotropic elastic membrane. Initially, for contact between a punch and the stretched circular membrane, we formulate and solve problems that are analogies to the Hertz-type and Boussinesq frictionless contact problems. A general statement for the slope of the force–displacement curve is formulated and proved. Then analogies to the JKR (Johnson, Kendall and Roberts) and the Boussinesq–Kendall contact problems in the presence of adhesive interactions are formulated. General nonlinear relations among the actual force, displacements and contact radius between a sticky membrane and an arbitrary axisymmetric indenter are derived. The dimensionless form of the equations for power-law shaped indenters has been analysed, and the explicit expressions are derived for the values of the pull-off force and corresponding critical contact radius.