2022
DOI: 10.1112/blms.12753
|View full text |Cite
|
Sign up to set email alerts
|

The Jones polynomial from a Goeritz matrix

Abstract: We give an explicit algorithm for calculating the Kauffman bracket of a link diagram from a Goeritz matrix for that link. Further, we show how the Jones polynomial can be recovered from a Goeritz matrix when the corresponding checkerboard surface is orientable, or when more information is known about its Gordon-Litherland form. In the process we develop a theory of Goeritz matrices for cographic matroids, which extends the bracket polynomial to any symmetric integer matrix. We place this work in the context of… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 21 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?